anndata.register_anndata_namespace#
- anndata.register_anndata_namespace(name)[source]#
Decorator for registering custom functionality with an
AnnData
object.This decorator allows you to extend AnnData objects with custom methods and properties organized under a namespace. The namespace becomes accessible as an attribute on AnnData instances, providing a clean way to you to add domain-specific functionality without modifying the AnnData class itself, or extending the class with additional methods as you see fit in your workflow.
- Parameters:
- name
str
Name under which the accessor should be registered. This will be the attribute name used to access your namespace’s functionality on AnnData objects (e.g.,
adata.{name}
). Cannot conflict with existing AnnData attributes likeobs
,var
,X
, etc. The list of reserved attributes includes everything outputted bydir(AnnData)
.
- name
- Return type:
Callable
[[type
[TypeVar
(NameSpT
, bound=ExtensionNamespace
)]],type
[TypeVar
(NameSpT
, bound=ExtensionNamespace
)]]- Returns:
A decorator that registers the decorated class as a custom namespace.
Notes
Implementation requirements:
The decorated class must have an
__init__
method that accepts exactly one parameter (besidesself
) namedadata
and annotated with typeAnnData
.The namespace will be initialized with the AnnData object on first access and then cached on the instance.
If the namespace name conflicts with an existing namespace, a warning is issued.
If the namespace name conflicts with a built-in AnnData attribute, an AttributeError is raised.
Examples
Simple transformation namespace with two methods:
>>> import anndata as ad >>> import numpy as np >>> >>> @ad.register_anndata_namespace("transform") ... class TransformX: ... def __init__(self, adata: ad.AnnData): ... self._adata = adata ... ... def log1p( ... self, layer: str = None, inplace: bool = False ... ) -> ad.AnnData | None: ... '''Log1p transform the data.''' ... data = self._adata.layers[layer] if layer else self._adata.X ... log1p_data = np.log1p(data) ... ... if layer: ... layer_name = f"{layer}_log1p" if not inplace else layer ... else: ... layer_name = "log1p" ... ... self._adata.layers[layer_name] = log1p_data ... ... if not inplace: ... return self._adata ... ... def arcsinh( ... self, layer: str = None, scale: float = 1.0, inplace: bool = False ... ) -> ad.AnnData | None: ... '''Arcsinh transform the data with optional scaling.''' ... data = self._adata.layers[layer] if layer else self._adata.X ... asinh_data = np.arcsinh(data / scale) ... ... if layer: ... layer_name = f"{layer}_arcsinh" if not inplace else layer ... else: ... layer_name = "arcsinh" ... ... self._adata.layers[layer_name] = asinh_data ... ... if not inplace: ... return self._adata >>> >>> # Create an AnnData object >>> rng = np.random.default_rng(42) >>> adata = ad.AnnData(X=rng.poisson(1, size=(100, 2000))) >>> >>> # Use the registered namespace >>> adata.transform.log1p() # Transforms X and returns the AnnData object AnnData object with n_obs × n_vars = 100 × 2000 layers: 'log1p' >>> adata.transform.arcsinh() # Transforms X and returns the AnnData object AnnData object with n_obs × n_vars = 100 × 2000 layers: 'log1p', 'arcsinh'