anndata.experimental.AnnCollection#
- class anndata.experimental.AnnCollection(adatas, join_obs='inner', join_obsm=None, join_vars=None, label=None, keys=None, index_unique=None, convert=None, harmonize_dtypes=True, indices_strict=True)[source]#
Lazily concatenate AnnData objects along the
obs
axis.This class doesn’t copy data from underlying AnnData objects, but lazily subsets using a joint index of observations and variables. It also allows on-the-fly application of prespecified converters to
.obs
attributes of the AnnData objects.Subsetting of this object returns an
AnnCollectionView
, which provides views of.obs
,.obsm
,.layers
,.X
from the underlying AnnData objects.- Parameters:
- adatas
Sequence
[AnnData
] |dict
[str
,AnnData
] The objects to be lazily concatenated. If a Mapping is passed, keys are used for the
keys
argument and values are concatenated.- join_obs
Optional
[Literal
['inner'
,'outer'
]] (default:'inner'
) If “inner” specified all
.obs
attributes fromadatas
will be inner joined and copied to this object. If “outer” specified all.obsm
attributes fromadatas
will be outer joined and copied to this object. For “inner” and “outer” subset objects will access.obs
of this object, not the original.obs
attributes ofadatas
. IfNone
, nothing is copied to this object’s.obs
, a subset object will directly access.obs
attributes ofadatas
(with proper reindexing and dtype conversions). ForNone`the inner join rule is used to select columns of `.obs
ofadatas
.- join_obsm
Optional
[Literal
['inner'
]] (default:None
) If “inner” specified all
.obsm
attributes fromadatas
will be inner joined and copied to this object. Subset objects will access.obsm
of this object, not the original.obsm
attributes ofadatas
. IfNone
, nothing is copied to this object’s.obsm
, a subset object will directly access.obsm
attributes ofadatas
(with proper reindexing and dtype conversions). For both options the inner join rule for the underlying.obsm
attributes is used.- join_vars
Optional
[Literal
['inner'
]] (default:None
) Specify how to join
adatas
along the var axis. IfNone
, assumes alladatas
have the same variables. If “inner”, the intersection of all variables inadatas
will be used.- label
str
|None
(default:None
) Column in
.obs
to place batch information in. If it’s None, no column is added.- keys
Sequence
[str
] |None
(default:None
) Names for each object being added. These values are used for column values for
label
or appended to the index ifindex_unique
is notNone
. Defaults to incrementing integer labels.- index_unique
str
|None
(default:None
) Whether to make the index unique by using the keys. If provided, this is the delimiter between “{orig_idx}{index_unique}{key}”. When
None
, the original indices are kept.- convert
Callable
|dict
[str
,Callable
|dict
[str
,Callable
]] |None
(default:None
) You can pass a function or a Mapping of functions which will be applied to the values of attributes (
.obs
,.obsm
,.layers
,.X
) or to specific keys of these attributes in the subset object. Specify an attribute and a key (if needed) as keys of the passed Mapping and a function to be applied as a value.- harmonize_dtypes
bool
(default:True
) If
True
, all retrieved arrays from subset objects will have the same dtype.- indices_strict
bool
(default:True
) If
True
, arrays from the subset objects will always have the same order of indices as in selection used to subset. This parameter can be set toFalse
if the order in the returned arrays is not important, for example, when using them for stochastic gradient descent. In this case the performance of subsetting can be a bit better.
- adatas
Examples
>>> from scanpy.datasets import pbmc68k_reduced, pbmc3k_processed >>> adata1, adata2 = pbmc68k_reduced(), pbmc3k_processed() >>> adata1.shape (700, 765) >>> adata2.shape (2638, 1838) >>> dc = AnnCollection([adata1, adata2], join_vars='inner') >>> dc AnnCollection object with n_obs × n_vars = 3338 × 208 constructed from 2 AnnData objects view of obsm: 'X_pca', 'X_umap' obs: 'n_genes', 'percent_mito', 'n_counts', 'louvain' >>> batch = dc[100:200] # AnnCollectionView >>> batch AnnCollectionView object with n_obs × n_vars = 100 × 208 obsm: 'X_pca', 'X_umap' obs: 'n_genes', 'percent_mito', 'n_counts', 'louvain' >>> batch.X.shape (100, 208) >>> len(batch.obs['louvain']) 100
Attributes
Dict of all accessible attributes and their keys.
On the fly converters for keys of attributes and data matrix.
True
ifadatas
have backed AnnData objects,False
otherwise.Number of observations.
Number of variables/features.
One-dimensional annotation of observations.
Multi-dimensional annotation of observations.
Shape of the lazily concatenated data matrix
Methods
iterate_axis
(batch_size[, axis, shuffle, ...])Iterate the lazy object over an axis.
lazy_attr
(attr[, key])Get a subsettable key from an attribute (array-like) or an attribute.
to_adata
()Convert this AnnCollection object to an AnnData object.