anndata.experimental.read_elem_as_dask#
- anndata.experimental.read_elem_as_dask(elem, chunks=None)[source]#
Read an element from a store lazily.
Assumes that the element is encoded using the anndata encoding. This function will determine the encoded type using the encoding metadata stored in elem’s attributes.
- Parameters:
- elem
Array
|Dataset
|Group
|Group
The stored element.
- chunks
tuple
[int
,...
] |None
(default:None
) length
n
, the samen
as the size of the underlying array. Note that the minor axis dimension must match the shape for sparse. Defaults to(1000, adata.shape[1])
for CSR sparse,(adata.shape[0], 1000)
for CSC sparse, and the on-disk chunking otherwise for dense. Can use-1
orNone
to indicate use of the size of the corresponding dimension.- optional
length
n
, the samen
as the size of the underlying array. Note that the minor axis dimension must match the shape for sparse. Defaults to(1000, adata.shape[1])
for CSR sparse,(adata.shape[0], 1000)
for CSC sparse, and the on-disk chunking otherwise for dense. Can use-1
orNone
to indicate use of the size of the corresponding dimension.
- elem
- Return type:
- Returns:
DaskArray
Examples
Setting up our example:
>>> from scanpy.datasets import pbmc3k >>> import tempfile >>> import anndata as ad >>> import zarr
>>> tmp_path = tempfile.gettempdir() >>> zarr_path = tmp_path + "/adata.zarr"
>>> adata = pbmc3k() >>> adata.layers["dense"] = adata.X.toarray() >>> adata.write_zarr(zarr_path)
Reading a sparse matrix from a zarr store lazily, with custom chunk size and default:
>>> g = zarr.open(zarr_path) >>> adata.X = ad.experimental.read_elem_as_dask(g["X"]) >>> adata.X dask.array<make_dask_chunk, shape=(2700, 32738), dtype=float32, chunksize=(1000, 32738), chunktype=scipy.csr_matrix> >>> adata.X = ad.experimental.read_elem_as_dask( ... g["X"], chunks=(500, adata.shape[1]) ... ) >>> adata.X dask.array<make_dask_chunk, shape=(2700, 32738), dtype=float32, chunksize=(500, 32738), chunktype=scipy.csr_matrix>
Reading a dense matrix from a zarr store lazily:
>>> adata.layers["dense"] = ad.experimental.read_elem_as_dask(g["layers/dense"]) >>> adata.layers["dense"] dask.array<from-zarr, shape=(2700, 32738), dtype=float32, chunksize=(169, 2047), chunktype=numpy.ndarray>
Making a new anndata object from on-disk, with custom chunks:
>>> adata = ad.AnnData( ... obs=ad.io.read_elem(g["obs"]), ... var=ad.io.read_elem(g["var"]), ... uns=ad.io.read_elem(g["uns"]), ... obsm=ad.io.read_elem(g["obsm"]), ... varm=ad.io.read_elem(g["varm"]), ... ) >>> adata.X = ad.experimental.read_elem_as_dask( ... g["X"], chunks=(500, adata.shape[1]) ... ) >>> adata.layers["dense"] = ad.experimental.read_elem_as_dask(g["layers/dense"])
We also support using -1 and None as a chunk size to signify the reading the whole axis:
>>> adata.X = ad.experimental.read_elem_as_dask(g["X"], chunks=(500, -1)) >>> adata.X = ad.experimental.read_elem_as_dask(g["X"], chunks=(500, None))