anndata.experimental.sparse_dataset#
- anndata.experimental.sparse_dataset(group)[source]#
- Generates a backed mode-compatible sparse dataset class. - Parameters:
- Return type:
- Returns:
- Sparse dataset class. 
 - Example - First we’ll need a stored dataset: - >>> import scanpy as sc >>> import h5py >>> from anndata.experimental import sparse_dataset, read_elem >>> sc.datasets.pbmc68k_reduced().raw.to_adata().write_h5ad("pbmc.h5ad") - Initialize a sparse dataset from storage - >>> f = h5py.File("pbmc.h5ad") >>> X = sparse_dataset(f["X"]) >>> X CSRDataset: backend hdf5, shape (700, 765), data_dtype float32 - Indexing returns sparse matrices - >>> X[100:200] <...sparse matrix of...float32...with 25003 stored elements...> - These can also be used inside of an AnnData object, no need for backed mode - >>> from anndata import AnnData >>> adata = AnnData( ... layers={"backed": X}, obs=read_elem(f["obs"]), var=read_elem(f["var"]) ... ) >>> adata.layers["backed"] CSRDataset: backend hdf5, shape (700, 765), data_dtype float32 - Indexing access (i.e., from views) brings selection into memory - >>> adata[adata.obs["bulk_labels"] == "CD56+ NK"].layers[ ... "backed" ... ] <...sparse matrix of...float32...with 7340 stored elements...>