anndata.concat#
- anndata.concat(adatas, *, axis=0, join='inner', merge=None, uns_merge=None, label=None, keys=None, index_unique=None, fill_value=None, pairwise=False)[source]#
- Concatenates AnnData objects along an axis. - See the concatenation section in the docs for a more in-depth description. - Parameters:
- adatas Union[Collection[AnnData],Mapping[str,AnnData]]
- The objects to be concatenated. If a Mapping is passed, keys are used for the - keysargument and values are concatenated.
- axis Literal[0,1] (default:0)
- Which axis to concatenate along. 
- join Literal['inner','outer'] (default:'inner')
- How to align values when concatenating. If “outer”, the union of the other axis is taken. If “inner”, the intersection. See concatenation for more. 
- merge Union[Literal['same','unique','first','only'],Callable,None] (default:None)
- How elements not aligned to the axis being concatenated along are selected. Currently implemented strategies include: - None: No elements are kept.
- "same": Elements that are the same in each of the objects.
- "unique": Elements for which there is only one possible value.
- "first": The first element seen at each from each position.
- "only": Elements that show up in only one of the objects.
 
- uns_merge Union[Literal['same','unique','first','only'],Callable,None] (default:None)
- How the elements of - .unsare selected. Uses the same set of strategies as the- mergeargument, except applied recursively.
- label str|None(default:None)
- Column in axis annotation (i.e. - .obsor- .var) to place batch information in. If it’s None, no column is added.
- keys Collection|None(default:None)
- Names for each object being added. These values are used for column values for - labelor appended to the index if- index_uniqueis not- None. Defaults to incrementing integer labels.
- index_unique str|None(default:None)
- Whether to make the index unique by using the keys. If provided, this is the delimiter between “{orig_idx}{index_unique}{key}”. When - None, the original indices are kept.
- fill_value Any|None(default:None)
- When - join="outer", this is the value that will be used to fill the introduced indices. By default, sparse arrays are padded with zeros, while dense arrays and DataFrames are padded with missing values.
- pairwise bool(default:False)
- Whether pairwise elements along the concatenated dimension should be included. This is False by default, since the resulting arrays are often not meaningful. 
 
- adatas 
- Return type:
 - Notes - Warning - If you use - join='outer'this fills 0s for sparse data when variables are absent in a batch. Use this with care. Dense data is filled with- NaN.- Examples - Preparing example objects - >>> import anndata as ad, pandas as pd, numpy as np >>> from scipy import sparse >>> a = ad.AnnData( ... X=sparse.csr_matrix(np.array([[0, 1], [2, 3]])), ... obs=pd.DataFrame({"group": ["a", "b"]}, index=["s1", "s2"]), ... var=pd.DataFrame(index=["var1", "var2"]), ... varm={ ... "ones": np.ones((2, 5)), ... "rand": np.random.randn(2, 3), ... "zeros": np.zeros((2, 5)), ... }, ... uns={"a": 1, "b": 2, "c": {"c.a": 3, "c.b": 4}}, ... ) >>> b = ad.AnnData( ... X=sparse.csr_matrix(np.array([[4, 5, 6], [7, 8, 9]])), ... obs=pd.DataFrame( ... {"group": ["b", "c"], "measure": [1.2, 4.3]}, index=["s3", "s4"] ... ), ... var=pd.DataFrame(index=["var1", "var2", "var3"]), ... varm={"ones": np.ones((3, 5)), "rand": np.random.randn(3, 5)}, ... uns={"a": 1, "b": 3, "c": {"c.b": 4}}, ... ) >>> c = ad.AnnData( ... X=sparse.csr_matrix(np.array([[10, 11], [12, 13]])), ... obs=pd.DataFrame({"group": ["a", "b"]}, index=["s1", "s2"]), ... var=pd.DataFrame(index=["var3", "var4"]), ... uns={"a": 1, "b": 4, "c": {"c.a": 3, "c.b": 4, "c.c": 5}}, ... ) - Concatenating along different axes - >>> ad.concat([a, b]).to_df() var1 var2 s1 0 1 s2 2 3 s3 4 5 s4 7 8 >>> ad.concat([a, c], axis=1).to_df() var1 var2 var3 var4 s1 0 1 10 11 s2 2 3 12 13 - Inner and outer joins - >>> inner = ad.concat([a, b]) # Joining on intersection of variables >>> inner AnnData object with n_obs × n_vars = 4 × 2 obs: 'group' >>> (inner.obs_names, inner.var_names) (Index(['s1', 's2', 's3', 's4'], dtype='object'), Index(['var1', 'var2'], dtype='object')) >>> outer = ad.concat([a, b], join="outer") # Joining on union of variables >>> outer AnnData object with n_obs × n_vars = 4 × 3 obs: 'group', 'measure' >>> outer.var_names Index(['var1', 'var2', 'var3'], dtype='object') >>> outer.to_df() # Sparse arrays are padded with zeroes by default var1 var2 var3 s1 0 1 0 s2 2 3 0 s3 4 5 6 s4 7 8 9 - Keeping track of source objects - >>> ad.concat({"a": a, "b": b}, label="batch").obs group batch s1 a a s2 b a s3 b b s4 c b >>> ad.concat([a, b], label="batch", keys=["a", "b"]).obs # Equivalent to previous group batch s1 a a s2 b a s3 b b s4 c b >>> ad.concat({"a": a, "b": b}, index_unique="-").obs group s1-a a s2-a b s3-b b s4-b c - Combining values not aligned to axis of concatenation - >>> ad.concat([a, b], merge="same") AnnData object with n_obs × n_vars = 4 × 2 obs: 'group' varm: 'ones' >>> ad.concat([a, b], merge="unique") AnnData object with n_obs × n_vars = 4 × 2 obs: 'group' varm: 'ones', 'zeros' >>> ad.concat([a, b], merge="first") AnnData object with n_obs × n_vars = 4 × 2 obs: 'group' varm: 'ones', 'rand', 'zeros' >>> ad.concat([a, b], merge="only") AnnData object with n_obs × n_vars = 4 × 2 obs: 'group' varm: 'zeros' - The same merge strategies can be used for elements in - .uns- >>> dict(ad.concat([a, b, c], uns_merge="same").uns) {'a': 1, 'c': {'c.b': 4}} >>> dict(ad.concat([a, b, c], uns_merge="unique").uns) {'a': 1, 'c': {'c.a': 3, 'c.b': 4, 'c.c': 5}} >>> dict(ad.concat([a, b, c], uns_merge="only").uns) {'c': {'c.c': 5}} >>> dict(ad.concat([a, b, c], uns_merge="first").uns) {'a': 1, 'b': 2, 'c': {'c.a': 3, 'c.b': 4, 'c.c': 5}}