anndata.AnnData.write#
- AnnData.write(filename=None, compression=None, compression_opts=None, as_dense=())[source]#
- Write - .h5ad-formatted hdf5 file.- Note - Setting compression to - 'gzip'can save disk space but will slow down writing and subsequent reading. Prior to v0.6.16, this was the default for parameter- compression.- Generally, if you have sparse data that are stored as a dense matrix, you can dramatically improve performance and reduce disk space by converting to a - csr_matrix:- from scipy.sparse import csr_matrix adata.X = csr_matrix(adata.X) - Parameters:
- filename PathLike|None(default:None)
- Filename of data file. Defaults to backing file. 
- compression Optional[Literal['gzip','lzf']] (default:None)
- For [ - lzf,- gzip], see the h5py Filter pipeline.- Alternative compression filters such as - zstdcan be passed from the hdf5plugin library. Experimental.- Usage example: - import hdf5plugin adata.write_h5ad( filename, compression=hdf5plugin.FILTERS["zstd"] ) - Note - Datasets written with hdf5plugin-provided compressors cannot be opened without first loading the hdf5plugin library using - import hdf5plugin. When using alternative compression filters such as- zstd, consider writing to- zarrformat instead of- h5ad, as the- zarrlibrary provides a more transparent compression pipeline.
- compression_opts int|Any(default:None)
- For [ - lzf,- gzip], see the h5py Filter pipeline.- Alternative compression filters such as - zstdcan be configured using helpers from the hdf5plugin library. Experimental.- Usage example (setting - zstdcompression level to 5):- import hdf5plugin adata.write_h5ad( filename, compression=hdf5plugin.FILTERS["zstd"], compression_opts=hdf5plugin.Zstd(clevel=5).filter_options ) 
- as_dense Sequence[str] (default:())
- Sparse arrays in AnnData object to write as dense. Currently only supports - Xand- raw/X.
 
- filename