anndata.experimental.AnnLoader#
- class anndata.experimental.AnnLoader(adatas, batch_size=1, shuffle=False, use_default_converter=True, use_cuda=False, **kwargs)[source]#
- PyTorch DataLoader for AnnData objects. - Builds DataLoader from a sequence of AnnData objects, from an - AnnCollectionobject or from an- AnnCollectionViewobject. Takes care of the required conversions.- Parameters:
- adatas Sequence[AnnData] |dict[str,AnnData]
- AnnDataobjects or an- AnnCollectionobject from which to load the data.
- batch_size int(default:1)
- How many samples per batch to load. 
- shuffle bool(default:False)
- Set to - Trueto have the data reshuffled at every epoch.
- use_default_converter bool(default:True)
- Use the default converter to convert arrays to pytorch tensors, transfer to the default cuda device (if - use_cuda=True), do memory pinning (if- pin_memory=True). If you pass an AnnCollection object with prespecified converters, the default converter won’t overwrite these converters but will be applied on top of them.
- use_cuda bool(default:False)
- Transfer pytorch tensors to the default cuda device after conversion. Only works if - use_default_converter=True
- **kwargs
- Arguments for PyTorch DataLoader. If - adatasis not an- AnnCollectionobject, then also arguments for- AnnCollectioninitialization.
 
- adatas 
 - Methods